Linux lhjmq-records 5.15.0-118-generic #128-Ubuntu SMP Fri Jul 5 09:28:59 UTC 2024 x86_64
Your IP : 3.149.24.49
import _thread
import contextlib
import functools
import sys
import threading
import time
from test import support
#=======================================================================
# Threading support to prevent reporting refleaks when running regrtest.py -R
# NOTE: we use thread._count() rather than threading.enumerate() (or the
# moral equivalent thereof) because a threading.Thread object is still alive
# until its __bootstrap() method has returned, even after it has been
# unregistered from the threading module.
# thread._count(), on the other hand, only gets decremented *after* the
# __bootstrap() method has returned, which gives us reliable reference counts
# at the end of a test run.
def threading_setup():
return _thread._count(), threading._dangling.copy()
def threading_cleanup(*original_values):
_MAX_COUNT = 100
for count in range(_MAX_COUNT):
values = _thread._count(), threading._dangling
if values == original_values:
break
if not count:
# Display a warning at the first iteration
support.environment_altered = True
dangling_threads = values[1]
support.print_warning(f"threading_cleanup() failed to cleanup "
f"{values[0] - original_values[0]} threads "
f"(count: {values[0]}, "
f"dangling: {len(dangling_threads)})")
for thread in dangling_threads:
support.print_warning(f"Dangling thread: {thread!r}")
# Don't hold references to threads
dangling_threads = None
values = None
time.sleep(0.01)
support.gc_collect()
def reap_threads(func):
"""Use this function when threads are being used. This will
ensure that the threads are cleaned up even when the test fails.
"""
@functools.wraps(func)
def decorator(*args):
key = threading_setup()
try:
return func(*args)
finally:
threading_cleanup(*key)
return decorator
@contextlib.contextmanager
def wait_threads_exit(timeout=None):
"""
bpo-31234: Context manager to wait until all threads created in the with
statement exit.
Use _thread.count() to check if threads exited. Indirectly, wait until
threads exit the internal t_bootstrap() C function of the _thread module.
threading_setup() and threading_cleanup() are designed to emit a warning
if a test leaves running threads in the background. This context manager
is designed to cleanup threads started by the _thread.start_new_thread()
which doesn't allow to wait for thread exit, whereas thread.Thread has a
join() method.
"""
if timeout is None:
timeout = support.SHORT_TIMEOUT
old_count = _thread._count()
try:
yield
finally:
start_time = time.monotonic()
deadline = start_time + timeout
while True:
count = _thread._count()
if count <= old_count:
break
if time.monotonic() > deadline:
dt = time.monotonic() - start_time
msg = (f"wait_threads() failed to cleanup {count - old_count} "
f"threads after {dt:.1f} seconds "
f"(count: {count}, old count: {old_count})")
raise AssertionError(msg)
time.sleep(0.010)
support.gc_collect()
def join_thread(thread, timeout=None):
"""Join a thread. Raise an AssertionError if the thread is still alive
after timeout seconds.
"""
if timeout is None:
timeout = support.SHORT_TIMEOUT
thread.join(timeout)
if thread.is_alive():
msg = f"failed to join the thread in {timeout:.1f} seconds"
raise AssertionError(msg)
@contextlib.contextmanager
def start_threads(threads, unlock=None):
import faulthandler
threads = list(threads)
started = []
try:
try:
for t in threads:
t.start()
started.append(t)
except:
if support.verbose:
print("Can't start %d threads, only %d threads started" %
(len(threads), len(started)))
raise
yield
finally:
try:
if unlock:
unlock()
endtime = time.monotonic()
for timeout in range(1, 16):
endtime += 60
for t in started:
t.join(max(endtime - time.monotonic(), 0.01))
started = [t for t in started if t.is_alive()]
if not started:
break
if support.verbose:
print('Unable to join %d threads during a period of '
'%d minutes' % (len(started), timeout))
finally:
started = [t for t in started if t.is_alive()]
if started:
faulthandler.dump_traceback(sys.stdout)
raise AssertionError('Unable to join %d threads' % len(started))
class catch_threading_exception:
"""
Context manager catching threading.Thread exception using
threading.excepthook.
Attributes set when an exception is caught:
* exc_type
* exc_value
* exc_traceback
* thread
See threading.excepthook() documentation for these attributes.
These attributes are deleted at the context manager exit.
Usage:
with threading_helper.catch_threading_exception() as cm:
# code spawning a thread which raises an exception
...
# check the thread exception, use cm attributes:
# exc_type, exc_value, exc_traceback, thread
...
# exc_type, exc_value, exc_traceback, thread attributes of cm no longer
# exists at this point
# (to avoid reference cycles)
"""
def __init__(self):
self.exc_type = None
self.exc_value = None
self.exc_traceback = None
self.thread = None
self._old_hook = None
def _hook(self, args):
self.exc_type = args.exc_type
self.exc_value = args.exc_value
self.exc_traceback = args.exc_traceback
self.thread = args.thread
def __enter__(self):
self._old_hook = threading.excepthook
threading.excepthook = self._hook
return self
def __exit__(self, *exc_info):
threading.excepthook = self._old_hook
del self.exc_type
del self.exc_value
del self.exc_traceback
del self.thread
|