Linux lhjmq-records 5.15.0-118-generic #128-Ubuntu SMP Fri Jul 5 09:28:59 UTC 2024 x86_64
Your IP : 3.145.85.233
#
# This file is part of pyasn1 software.
#
# Copyright (c) 2005-2019, Ilya Etingof <etingof@gmail.com>
# License: http://snmplabs.com/pyasn1/license.html
#
# Original concept and code by Mike C. Fletcher.
#
import sys
from pyasn1.type import error
__all__ = ['SingleValueConstraint', 'ContainedSubtypeConstraint',
'ValueRangeConstraint', 'ValueSizeConstraint',
'PermittedAlphabetConstraint', 'InnerTypeConstraint',
'ConstraintsExclusion', 'ConstraintsIntersection',
'ConstraintsUnion']
class AbstractConstraint(object):
def __init__(self, *values):
self._valueMap = set()
self._setValues(values)
self.__hash = hash((self.__class__.__name__, self._values))
def __call__(self, value, idx=None):
if not self._values:
return
try:
self._testValue(value, idx)
except error.ValueConstraintError:
raise error.ValueConstraintError(
'%s failed at: %r' % (self, sys.exc_info()[1])
)
def __repr__(self):
representation = '%s object' % (self.__class__.__name__)
if self._values:
representation += ', consts %s' % ', '.join(
[repr(x) for x in self._values])
return '<%s>' % representation
def __eq__(self, other):
return self is other and True or self._values == other
def __ne__(self, other):
return self._values != other
def __lt__(self, other):
return self._values < other
def __le__(self, other):
return self._values <= other
def __gt__(self, other):
return self._values > other
def __ge__(self, other):
return self._values >= other
if sys.version_info[0] <= 2:
def __nonzero__(self):
return self._values and True or False
else:
def __bool__(self):
return self._values and True or False
def __hash__(self):
return self.__hash
def _setValues(self, values):
self._values = values
def _testValue(self, value, idx):
raise error.ValueConstraintError(value)
# Constraints derivation logic
def getValueMap(self):
return self._valueMap
def isSuperTypeOf(self, otherConstraint):
# TODO: fix possible comparison of set vs scalars here
return (otherConstraint is self or
not self._values or
otherConstraint == self or
self in otherConstraint.getValueMap())
def isSubTypeOf(self, otherConstraint):
return (otherConstraint is self or
not self or
otherConstraint == self or
otherConstraint in self._valueMap)
class SingleValueConstraint(AbstractConstraint):
"""Create a SingleValueConstraint object.
The SingleValueConstraint satisfies any value that
is present in the set of permitted values.
Objects of this type are iterable (emitting constraint values) and
can act as operands for some arithmetic operations e.g. addition
and subtraction. The latter can be used for combining multiple
SingleValueConstraint objects into one.
The SingleValueConstraint object can be applied to
any ASN.1 type.
Parameters
----------
*values: :class:`int`
Full set of values permitted by this constraint object.
Examples
--------
.. code-block:: python
class DivisorOfSix(Integer):
'''
ASN.1 specification:
Divisor-Of-6 ::= INTEGER (1 | 2 | 3 | 6)
'''
subtypeSpec = SingleValueConstraint(1, 2, 3, 6)
# this will succeed
divisor_of_six = DivisorOfSix(1)
# this will raise ValueConstraintError
divisor_of_six = DivisorOfSix(7)
"""
def _setValues(self, values):
self._values = values
self._set = set(values)
def _testValue(self, value, idx):
if value not in self._set:
raise error.ValueConstraintError(value)
# Constrains can be merged or reduced
def __contains__(self, item):
return item in self._set
def __iter__(self):
return iter(self._set)
def __sub__(self, constraint):
return self.__class__(*(self._set.difference(constraint)))
def __add__(self, constraint):
return self.__class__(*(self._set.union(constraint)))
def __sub__(self, constraint):
return self.__class__(*(self._set.difference(constraint)))
class ContainedSubtypeConstraint(AbstractConstraint):
"""Create a ContainedSubtypeConstraint object.
The ContainedSubtypeConstraint satisfies any value that
is present in the set of permitted values and also
satisfies included constraints.
The ContainedSubtypeConstraint object can be applied to
any ASN.1 type.
Parameters
----------
*values:
Full set of values and constraint objects permitted
by this constraint object.
Examples
--------
.. code-block:: python
class DivisorOfEighteen(Integer):
'''
ASN.1 specification:
Divisors-of-18 ::= INTEGER (INCLUDES Divisors-of-6 | 9 | 18)
'''
subtypeSpec = ContainedSubtypeConstraint(
SingleValueConstraint(1, 2, 3, 6), 9, 18
)
# this will succeed
divisor_of_eighteen = DivisorOfEighteen(9)
# this will raise ValueConstraintError
divisor_of_eighteen = DivisorOfEighteen(10)
"""
def _testValue(self, value, idx):
for constraint in self._values:
if isinstance(constraint, AbstractConstraint):
constraint(value, idx)
elif value not in self._set:
raise error.ValueConstraintError(value)
class ValueRangeConstraint(AbstractConstraint):
"""Create a ValueRangeConstraint object.
The ValueRangeConstraint satisfies any value that
falls in the range of permitted values.
The ValueRangeConstraint object can only be applied
to :class:`~pyasn1.type.univ.Integer` and
:class:`~pyasn1.type.univ.Real` types.
Parameters
----------
start: :class:`int`
Minimum permitted value in the range (inclusive)
end: :class:`int`
Maximum permitted value in the range (inclusive)
Examples
--------
.. code-block:: python
class TeenAgeYears(Integer):
'''
ASN.1 specification:
TeenAgeYears ::= INTEGER (13 .. 19)
'''
subtypeSpec = ValueRangeConstraint(13, 19)
# this will succeed
teen_year = TeenAgeYears(18)
# this will raise ValueConstraintError
teen_year = TeenAgeYears(20)
"""
def _testValue(self, value, idx):
if value < self.start or value > self.stop:
raise error.ValueConstraintError(value)
def _setValues(self, values):
if len(values) != 2:
raise error.PyAsn1Error(
'%s: bad constraint values' % (self.__class__.__name__,)
)
self.start, self.stop = values
if self.start > self.stop:
raise error.PyAsn1Error(
'%s: screwed constraint values (start > stop): %s > %s' % (
self.__class__.__name__,
self.start, self.stop
)
)
AbstractConstraint._setValues(self, values)
class ValueSizeConstraint(ValueRangeConstraint):
"""Create a ValueSizeConstraint object.
The ValueSizeConstraint satisfies any value for
as long as its size falls within the range of
permitted sizes.
The ValueSizeConstraint object can be applied
to :class:`~pyasn1.type.univ.BitString`,
:class:`~pyasn1.type.univ.OctetString` (including
all :ref:`character ASN.1 types <type.char>`),
:class:`~pyasn1.type.univ.SequenceOf`
and :class:`~pyasn1.type.univ.SetOf` types.
Parameters
----------
minimum: :class:`int`
Minimum permitted size of the value (inclusive)
maximum: :class:`int`
Maximum permitted size of the value (inclusive)
Examples
--------
.. code-block:: python
class BaseballTeamRoster(SetOf):
'''
ASN.1 specification:
BaseballTeamRoster ::= SET SIZE (1..25) OF PlayerNames
'''
componentType = PlayerNames()
subtypeSpec = ValueSizeConstraint(1, 25)
# this will succeed
team = BaseballTeamRoster()
team.extend(['Jan', 'Matej'])
encode(team)
# this will raise ValueConstraintError
team = BaseballTeamRoster()
team.extend(['Jan'] * 26)
encode(team)
Note
----
Whenever ValueSizeConstraint is applied to mutable types
(e.g. :class:`~pyasn1.type.univ.SequenceOf`,
:class:`~pyasn1.type.univ.SetOf`), constraint
validation only happens at the serialisation phase rather
than schema instantiation phase (as it is with immutable
types).
"""
def _testValue(self, value, idx):
valueSize = len(value)
if valueSize < self.start or valueSize > self.stop:
raise error.ValueConstraintError(value)
class PermittedAlphabetConstraint(SingleValueConstraint):
"""Create a PermittedAlphabetConstraint object.
The PermittedAlphabetConstraint satisfies any character
string for as long as all its characters are present in
the set of permitted characters.
Objects of this type are iterable (emitting constraint values) and
can act as operands for some arithmetic operations e.g. addition
and subtraction.
The PermittedAlphabetConstraint object can only be applied
to the :ref:`character ASN.1 types <type.char>` such as
:class:`~pyasn1.type.char.IA5String`.
Parameters
----------
*alphabet: :class:`str`
Full set of characters permitted by this constraint object.
Example
-------
.. code-block:: python
class BooleanValue(IA5String):
'''
ASN.1 specification:
BooleanValue ::= IA5String (FROM ('T' | 'F'))
'''
subtypeSpec = PermittedAlphabetConstraint('T', 'F')
# this will succeed
truth = BooleanValue('T')
truth = BooleanValue('TF')
# this will raise ValueConstraintError
garbage = BooleanValue('TAF')
ASN.1 `FROM ... EXCEPT ...` clause can be modelled by combining multiple
PermittedAlphabetConstraint objects into one:
Example
-------
.. code-block:: python
class Lipogramme(IA5String):
'''
ASN.1 specification:
Lipogramme ::=
IA5String (FROM (ALL EXCEPT ("e"|"E")))
'''
subtypeSpec = (
PermittedAlphabetConstraint(*string.printable) -
PermittedAlphabetConstraint('e', 'E')
)
# this will succeed
lipogramme = Lipogramme('A work of fiction?')
# this will raise ValueConstraintError
lipogramme = Lipogramme('Eel')
Note
----
Although `ConstraintsExclusion` object could seemingly be used for this
purpose, practically, for it to work, it needs to represent its operand
constraints as sets and intersect one with the other. That would require
the insight into the constraint values (and their types) that are otherwise
hidden inside the constraint object.
Therefore it's more practical to model `EXCEPT` clause at
`PermittedAlphabetConstraint` level instead.
"""
def _setValues(self, values):
self._values = values
self._set = set(values)
def _testValue(self, value, idx):
if not self._set.issuperset(value):
raise error.ValueConstraintError(value)
class ComponentPresentConstraint(AbstractConstraint):
"""Create a ComponentPresentConstraint object.
The ComponentPresentConstraint is only satisfied when the value
is not `None`.
The ComponentPresentConstraint object is typically used with
`WithComponentsConstraint`.
Examples
--------
.. code-block:: python
present = ComponentPresentConstraint()
# this will succeed
present('whatever')
# this will raise ValueConstraintError
present(None)
"""
def _setValues(self, values):
self._values = ('<must be present>',)
if values:
raise error.PyAsn1Error('No arguments expected')
def _testValue(self, value, idx):
if value is None:
raise error.ValueConstraintError(
'Component is not present:')
class ComponentAbsentConstraint(AbstractConstraint):
"""Create a ComponentAbsentConstraint object.
The ComponentAbsentConstraint is only satisfied when the value
is `None`.
The ComponentAbsentConstraint object is typically used with
`WithComponentsConstraint`.
Examples
--------
.. code-block:: python
absent = ComponentAbsentConstraint()
# this will succeed
absent(None)
# this will raise ValueConstraintError
absent('whatever')
"""
def _setValues(self, values):
self._values = ('<must be absent>',)
if values:
raise error.PyAsn1Error('No arguments expected')
def _testValue(self, value, idx):
if value is not None:
raise error.ValueConstraintError(
'Component is not absent: %r' % value)
class WithComponentsConstraint(AbstractConstraint):
"""Create a WithComponentsConstraint object.
The `WithComponentsConstraint` satisfies any mapping object that has
constrained fields present or absent, what is indicated by
`ComponentPresentConstraint` and `ComponentAbsentConstraint`
objects respectively.
The `WithComponentsConstraint` object is typically applied
to :class:`~pyasn1.type.univ.Set` or
:class:`~pyasn1.type.univ.Sequence` types.
Parameters
----------
*fields: :class:`tuple`
Zero or more tuples of (`field`, `constraint`) indicating constrained
fields.
Notes
-----
On top of the primary use of `WithComponentsConstraint` (ensuring presence
or absence of particular components of a :class:`~pyasn1.type.univ.Set` or
:class:`~pyasn1.type.univ.Sequence`), it is also possible to pass any other
constraint objects or their combinations. In case of scalar fields, these
constraints will be verified in addition to the constraints belonging to
scalar components themselves. However, formally, these additional
constraints do not change the type of these ASN.1 objects.
Examples
--------
.. code-block:: python
class Item(Sequence): # Set is similar
'''
ASN.1 specification:
Item ::= SEQUENCE {
id INTEGER OPTIONAL,
name OCTET STRING OPTIONAL
} WITH COMPONENTS id PRESENT, name ABSENT | id ABSENT, name PRESENT
'''
componentType = NamedTypes(
OptionalNamedType('id', Integer()),
OptionalNamedType('name', OctetString())
)
withComponents = ConstraintsUnion(
WithComponentsConstraint(
('id', ComponentPresentConstraint()),
('name', ComponentAbsentConstraint())
),
WithComponentsConstraint(
('id', ComponentAbsentConstraint()),
('name', ComponentPresentConstraint())
)
)
item = Item()
# This will succeed
item['id'] = 1
# This will succeed
item.reset()
item['name'] = 'John'
# This will fail (on encoding)
item.reset()
descr['id'] = 1
descr['name'] = 'John'
"""
def _testValue(self, value, idx):
for field, constraint in self._values:
constraint(value.get(field))
def _setValues(self, values):
AbstractConstraint._setValues(self, values)
# This is a bit kludgy, meaning two op modes within a single constraint
class InnerTypeConstraint(AbstractConstraint):
"""Value must satisfy the type and presence constraints"""
def _testValue(self, value, idx):
if self.__singleTypeConstraint:
self.__singleTypeConstraint(value)
elif self.__multipleTypeConstraint:
if idx not in self.__multipleTypeConstraint:
raise error.ValueConstraintError(value)
constraint, status = self.__multipleTypeConstraint[idx]
if status == 'ABSENT': # XXX presence is not checked!
raise error.ValueConstraintError(value)
constraint(value)
def _setValues(self, values):
self.__multipleTypeConstraint = {}
self.__singleTypeConstraint = None
for v in values:
if isinstance(v, tuple):
self.__multipleTypeConstraint[v[0]] = v[1], v[2]
else:
self.__singleTypeConstraint = v
AbstractConstraint._setValues(self, values)
# Logic operations on constraints
class ConstraintsExclusion(AbstractConstraint):
"""Create a ConstraintsExclusion logic operator object.
The ConstraintsExclusion logic operator succeeds when the
value does *not* satisfy the operand constraint.
The ConstraintsExclusion object can be applied to
any constraint and logic operator object.
Parameters
----------
*constraints:
Constraint or logic operator objects.
Examples
--------
.. code-block:: python
class LuckyNumber(Integer):
subtypeSpec = ConstraintsExclusion(
SingleValueConstraint(13)
)
# this will succeed
luckyNumber = LuckyNumber(12)
# this will raise ValueConstraintError
luckyNumber = LuckyNumber(13)
Note
----
The `FROM ... EXCEPT ...` ASN.1 clause should be modeled by combining
constraint objects into one. See `PermittedAlphabetConstraint` for more
information.
"""
def _testValue(self, value, idx):
for constraint in self._values:
try:
constraint(value, idx)
except error.ValueConstraintError:
continue
raise error.ValueConstraintError(value)
def _setValues(self, values):
AbstractConstraint._setValues(self, values)
class AbstractConstraintSet(AbstractConstraint):
def __getitem__(self, idx):
return self._values[idx]
def __iter__(self):
return iter(self._values)
def __add__(self, value):
return self.__class__(*(self._values + (value,)))
def __radd__(self, value):
return self.__class__(*((value,) + self._values))
def __len__(self):
return len(self._values)
# Constraints inclusion in sets
def _setValues(self, values):
self._values = values
for constraint in values:
if constraint:
self._valueMap.add(constraint)
self._valueMap.update(constraint.getValueMap())
class ConstraintsIntersection(AbstractConstraintSet):
"""Create a ConstraintsIntersection logic operator object.
The ConstraintsIntersection logic operator only succeeds
if *all* its operands succeed.
The ConstraintsIntersection object can be applied to
any constraint and logic operator objects.
The ConstraintsIntersection object duck-types the immutable
container object like Python :py:class:`tuple`.
Parameters
----------
*constraints:
Constraint or logic operator objects.
Examples
--------
.. code-block:: python
class CapitalAndSmall(IA5String):
'''
ASN.1 specification:
CapitalAndSmall ::=
IA5String (FROM ("A".."Z"|"a".."z"))
'''
subtypeSpec = ConstraintsIntersection(
PermittedAlphabetConstraint('A', 'Z'),
PermittedAlphabetConstraint('a', 'z')
)
# this will succeed
capital_and_small = CapitalAndSmall('Hello')
# this will raise ValueConstraintError
capital_and_small = CapitalAndSmall('hello')
"""
def _testValue(self, value, idx):
for constraint in self._values:
constraint(value, idx)
class ConstraintsUnion(AbstractConstraintSet):
"""Create a ConstraintsUnion logic operator object.
The ConstraintsUnion logic operator succeeds if
*at least* a single operand succeeds.
The ConstraintsUnion object can be applied to
any constraint and logic operator objects.
The ConstraintsUnion object duck-types the immutable
container object like Python :py:class:`tuple`.
Parameters
----------
*constraints:
Constraint or logic operator objects.
Examples
--------
.. code-block:: python
class CapitalOrSmall(IA5String):
'''
ASN.1 specification:
CapitalOrSmall ::=
IA5String (FROM ("A".."Z") | FROM ("a".."z"))
'''
subtypeSpec = ConstraintsUnion(
PermittedAlphabetConstraint('A', 'Z'),
PermittedAlphabetConstraint('a', 'z')
)
# this will succeed
capital_or_small = CapitalAndSmall('Hello')
# this will raise ValueConstraintError
capital_or_small = CapitalOrSmall('hello!')
"""
def _testValue(self, value, idx):
for constraint in self._values:
try:
constraint(value, idx)
except error.ValueConstraintError:
pass
else:
return
raise error.ValueConstraintError(
'all of %s failed for "%s"' % (self._values, value)
)
# TODO:
# refactor InnerTypeConstraint
# add tests for type check
# implement other constraint types
# make constraint validation easy to skip
|