Linux lhjmq-records 5.15.0-118-generic #128-Ubuntu SMP Fri Jul 5 09:28:59 UTC 2024 x86_64
Your IP : 18.222.91.173
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_HIGHMEM_H
#define _LINUX_HIGHMEM_H
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/bug.h>
#include <linux/mm.h>
#include <linux/uaccess.h>
#include <linux/hardirq.h>
#include <asm/cacheflush.h>
#include "highmem-internal.h"
/**
* kmap - Map a page for long term usage
* @page: Pointer to the page to be mapped
*
* Returns: The virtual address of the mapping
*
* Can only be invoked from preemptible task context because on 32bit
* systems with CONFIG_HIGHMEM enabled this function might sleep.
*
* For systems with CONFIG_HIGHMEM=n and for pages in the low memory area
* this returns the virtual address of the direct kernel mapping.
*
* The returned virtual address is globally visible and valid up to the
* point where it is unmapped via kunmap(). The pointer can be handed to
* other contexts.
*
* For highmem pages on 32bit systems this can be slow as the mapping space
* is limited and protected by a global lock. In case that there is no
* mapping slot available the function blocks until a slot is released via
* kunmap().
*/
static inline void *kmap(struct page *page);
/**
* kunmap - Unmap the virtual address mapped by kmap()
* @addr: Virtual address to be unmapped
*
* Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of
* pages in the low memory area.
*/
static inline void kunmap(struct page *page);
/**
* kmap_to_page - Get the page for a kmap'ed address
* @addr: The address to look up
*
* Returns: The page which is mapped to @addr.
*/
static inline struct page *kmap_to_page(void *addr);
/**
* kmap_flush_unused - Flush all unused kmap mappings in order to
* remove stray mappings
*/
static inline void kmap_flush_unused(void);
/**
* kmap_local_page - Map a page for temporary usage
* @page: Pointer to the page to be mapped
*
* Returns: The virtual address of the mapping
*
* Can be invoked from any context.
*
* Requires careful handling when nesting multiple mappings because the map
* management is stack based. The unmap has to be in the reverse order of
* the map operation:
*
* addr1 = kmap_local_page(page1);
* addr2 = kmap_local_page(page2);
* ...
* kunmap_local(addr2);
* kunmap_local(addr1);
*
* Unmapping addr1 before addr2 is invalid and causes malfunction.
*
* Contrary to kmap() mappings the mapping is only valid in the context of
* the caller and cannot be handed to other contexts.
*
* On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
* virtual address of the direct mapping. Only real highmem pages are
* temporarily mapped.
*
* While it is significantly faster than kmap() for the higmem case it
* comes with restrictions about the pointer validity. Only use when really
* necessary.
*
* On HIGHMEM enabled systems mapping a highmem page has the side effect of
* disabling migration in order to keep the virtual address stable across
* preemption. No caller of kmap_local_page() can rely on this side effect.
*/
static inline void *kmap_local_page(struct page *page);
/**
* kmap_atomic - Atomically map a page for temporary usage - Deprecated!
* @page: Pointer to the page to be mapped
*
* Returns: The virtual address of the mapping
*
* Effectively a wrapper around kmap_local_page() which disables pagefaults
* and preemption.
*
* Do not use in new code. Use kmap_local_page() instead.
*/
static inline void *kmap_atomic(struct page *page);
/**
* kunmap_atomic - Unmap the virtual address mapped by kmap_atomic()
* @addr: Virtual address to be unmapped
*
* Counterpart to kmap_atomic().
*
* Effectively a wrapper around kunmap_local() which additionally undoes
* the side effects of kmap_atomic(), i.e. reenabling pagefaults and
* preemption.
*/
/* Highmem related interfaces for management code */
static inline unsigned int nr_free_highpages(void);
static inline unsigned long totalhigh_pages(void);
#ifndef ARCH_HAS_FLUSH_ANON_PAGE
static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
{
}
#endif
#ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
static inline void flush_kernel_vmap_range(void *vaddr, int size)
{
}
static inline void invalidate_kernel_vmap_range(void *vaddr, int size)
{
}
#endif
/* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */
#ifndef clear_user_highpage
static inline void clear_user_highpage(struct page *page, unsigned long vaddr)
{
void *addr = kmap_atomic(page);
clear_user_page(addr, vaddr, page);
kunmap_atomic(addr);
}
#endif
#ifndef __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE
/**
* alloc_zeroed_user_highpage_movable - Allocate a zeroed HIGHMEM page for a VMA that the caller knows can move
* @vma: The VMA the page is to be allocated for
* @vaddr: The virtual address the page will be inserted into
*
* This function will allocate a page for a VMA that the caller knows will
* be able to migrate in the future using move_pages() or reclaimed
*
* An architecture may override this function by defining
* __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE and providing their own
* implementation.
*/
static inline struct page *
alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma,
unsigned long vaddr)
{
struct page *page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
if (page)
clear_user_highpage(page, vaddr);
return page;
}
#endif
static inline void clear_highpage(struct page *page)
{
void *kaddr = kmap_atomic(page);
clear_page(kaddr);
kunmap_atomic(kaddr);
}
#ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGE
static inline void tag_clear_highpage(struct page *page)
{
}
#endif
/*
* If we pass in a base or tail page, we can zero up to PAGE_SIZE.
* If we pass in a head page, we can zero up to the size of the compound page.
*/
#if defined(CONFIG_HIGHMEM) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
unsigned start2, unsigned end2);
#else /* !HIGHMEM || !TRANSPARENT_HUGEPAGE */
static inline void zero_user_segments(struct page *page,
unsigned start1, unsigned end1,
unsigned start2, unsigned end2)
{
void *kaddr = kmap_atomic(page);
unsigned int i;
BUG_ON(end1 > page_size(page) || end2 > page_size(page));
if (end1 > start1)
memset(kaddr + start1, 0, end1 - start1);
if (end2 > start2)
memset(kaddr + start2, 0, end2 - start2);
kunmap_atomic(kaddr);
for (i = 0; i < compound_nr(page); i++)
flush_dcache_page(page + i);
}
#endif /* !HIGHMEM || !TRANSPARENT_HUGEPAGE */
static inline void zero_user_segment(struct page *page,
unsigned start, unsigned end)
{
zero_user_segments(page, start, end, 0, 0);
}
static inline void zero_user(struct page *page,
unsigned start, unsigned size)
{
zero_user_segments(page, start, start + size, 0, 0);
}
#ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE
static inline void copy_user_highpage(struct page *to, struct page *from,
unsigned long vaddr, struct vm_area_struct *vma)
{
char *vfrom, *vto;
vfrom = kmap_atomic(from);
vto = kmap_atomic(to);
copy_user_page(vto, vfrom, vaddr, to);
kunmap_atomic(vto);
kunmap_atomic(vfrom);
}
#endif
#ifdef copy_mc_to_kernel
static inline int copy_mc_user_highpage(struct page *to, struct page *from,
unsigned long vaddr, struct vm_area_struct *vma)
{
unsigned long ret;
char *vfrom, *vto;
vfrom = kmap_local_page(from);
vto = kmap_local_page(to);
ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE);
kunmap_local(vto);
kunmap_local(vfrom);
return ret;
}
#else
static inline int copy_mc_user_highpage(struct page *to, struct page *from,
unsigned long vaddr, struct vm_area_struct *vma)
{
copy_user_highpage(to, from, vaddr, vma);
return 0;
}
#endif
#ifndef __HAVE_ARCH_COPY_HIGHPAGE
static inline void copy_highpage(struct page *to, struct page *from)
{
char *vfrom, *vto;
vfrom = kmap_atomic(from);
vto = kmap_atomic(to);
copy_page(vto, vfrom);
kunmap_atomic(vto);
kunmap_atomic(vfrom);
}
#endif
static inline void memcpy_page(struct page *dst_page, size_t dst_off,
struct page *src_page, size_t src_off,
size_t len)
{
char *dst = kmap_local_page(dst_page);
char *src = kmap_local_page(src_page);
VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
memcpy(dst + dst_off, src + src_off, len);
kunmap_local(src);
kunmap_local(dst);
}
static inline void memmove_page(struct page *dst_page, size_t dst_off,
struct page *src_page, size_t src_off,
size_t len)
{
char *dst = kmap_local_page(dst_page);
char *src = kmap_local_page(src_page);
VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
memmove(dst + dst_off, src + src_off, len);
kunmap_local(src);
kunmap_local(dst);
}
static inline void memset_page(struct page *page, size_t offset, int val,
size_t len)
{
char *addr = kmap_local_page(page);
VM_BUG_ON(offset + len > PAGE_SIZE);
memset(addr + offset, val, len);
kunmap_local(addr);
}
static inline void memcpy_from_page(char *to, struct page *page,
size_t offset, size_t len)
{
char *from = kmap_local_page(page);
VM_BUG_ON(offset + len > PAGE_SIZE);
memcpy(to, from + offset, len);
kunmap_local(from);
}
static inline void memcpy_to_page(struct page *page, size_t offset,
const char *from, size_t len)
{
char *to = kmap_local_page(page);
VM_BUG_ON(offset + len > PAGE_SIZE);
memcpy(to + offset, from, len);
flush_dcache_page(page);
kunmap_local(to);
}
static inline void memzero_page(struct page *page, size_t offset, size_t len)
{
char *addr = kmap_local_page(page);
memset(addr + offset, 0, len);
flush_dcache_page(page);
kunmap_local(addr);
}
#endif /* _LINUX_HIGHMEM_H */
|