Linux lhjmq-records 5.15.0-118-generic #128-Ubuntu SMP Fri Jul 5 09:28:59 UTC 2024 x86_64
Your IP : 3.149.29.190
/* SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) */
/* QLogic qed NIC Driver
* Copyright (c) 2015-2017 QLogic Corporation
* Copyright (c) 2019-2020 Marvell International Ltd.
*/
#ifndef _QED_CHAIN_H
#define _QED_CHAIN_H
#include <linux/types.h>
#include <asm/byteorder.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/qed/common_hsi.h>
enum qed_chain_mode {
/* Each Page contains a next pointer at its end */
QED_CHAIN_MODE_NEXT_PTR,
/* Chain is a single page (next ptr) is not required */
QED_CHAIN_MODE_SINGLE,
/* Page pointers are located in a side list */
QED_CHAIN_MODE_PBL,
};
enum qed_chain_use_mode {
QED_CHAIN_USE_TO_PRODUCE, /* Chain starts empty */
QED_CHAIN_USE_TO_CONSUME, /* Chain starts full */
QED_CHAIN_USE_TO_CONSUME_PRODUCE, /* Chain starts empty */
};
enum qed_chain_cnt_type {
/* The chain's size/prod/cons are kept in 16-bit variables */
QED_CHAIN_CNT_TYPE_U16,
/* The chain's size/prod/cons are kept in 32-bit variables */
QED_CHAIN_CNT_TYPE_U32,
};
struct qed_chain_next {
struct regpair next_phys;
void *next_virt;
};
struct qed_chain_pbl_u16 {
u16 prod_page_idx;
u16 cons_page_idx;
};
struct qed_chain_pbl_u32 {
u32 prod_page_idx;
u32 cons_page_idx;
};
struct qed_chain_u16 {
/* Cyclic index of next element to produce/consume */
u16 prod_idx;
u16 cons_idx;
};
struct qed_chain_u32 {
/* Cyclic index of next element to produce/consume */
u32 prod_idx;
u32 cons_idx;
};
struct addr_tbl_entry {
void *virt_addr;
dma_addr_t dma_map;
};
struct qed_chain {
/* Fastpath portion of the chain - required for commands such
* as produce / consume.
*/
/* Point to next element to produce/consume */
void *p_prod_elem;
void *p_cons_elem;
/* Fastpath portions of the PBL [if exists] */
struct {
/* Table for keeping the virtual and physical addresses of the
* chain pages, respectively to the physical addresses
* in the pbl table.
*/
struct addr_tbl_entry *pp_addr_tbl;
union {
struct qed_chain_pbl_u16 u16;
struct qed_chain_pbl_u32 u32;
} c;
} pbl;
union {
struct qed_chain_u16 chain16;
struct qed_chain_u32 chain32;
} u;
/* Capacity counts only usable elements */
u32 capacity;
u32 page_cnt;
enum qed_chain_mode mode;
/* Elements information for fast calculations */
u16 elem_per_page;
u16 elem_per_page_mask;
u16 elem_size;
u16 next_page_mask;
u16 usable_per_page;
u8 elem_unusable;
enum qed_chain_cnt_type cnt_type;
/* Slowpath of the chain - required for initialization and destruction,
* but isn't involved in regular functionality.
*/
u32 page_size;
/* Base address of a pre-allocated buffer for pbl */
struct {
__le64 *table_virt;
dma_addr_t table_phys;
size_t table_size;
} pbl_sp;
/* Address of first page of the chain - the address is required
* for fastpath operation [consume/produce] but only for the SINGLE
* flavour which isn't considered fastpath [== SPQ].
*/
void *p_virt_addr;
dma_addr_t p_phys_addr;
/* Total number of elements [for entire chain] */
u32 size;
enum qed_chain_use_mode intended_use;
bool b_external_pbl;
};
struct qed_chain_init_params {
enum qed_chain_mode mode;
enum qed_chain_use_mode intended_use;
enum qed_chain_cnt_type cnt_type;
u32 page_size;
u32 num_elems;
size_t elem_size;
void *ext_pbl_virt;
dma_addr_t ext_pbl_phys;
};
#define QED_CHAIN_PAGE_SIZE SZ_4K
#define ELEMS_PER_PAGE(elem_size, page_size) \
((page_size) / (elem_size))
#define UNUSABLE_ELEMS_PER_PAGE(elem_size, mode) \
(((mode) == QED_CHAIN_MODE_NEXT_PTR) ? \
(u8)(1 + ((sizeof(struct qed_chain_next) - 1) / (elem_size))) : \
0)
#define USABLE_ELEMS_PER_PAGE(elem_size, page_size, mode) \
((u32)(ELEMS_PER_PAGE((elem_size), (page_size)) - \
UNUSABLE_ELEMS_PER_PAGE((elem_size), (mode))))
#define QED_CHAIN_PAGE_CNT(elem_cnt, elem_size, page_size, mode) \
DIV_ROUND_UP((elem_cnt), \
USABLE_ELEMS_PER_PAGE((elem_size), (page_size), (mode)))
#define is_chain_u16(p) \
((p)->cnt_type == QED_CHAIN_CNT_TYPE_U16)
#define is_chain_u32(p) \
((p)->cnt_type == QED_CHAIN_CNT_TYPE_U32)
/* Accessors */
static inline u16 qed_chain_get_prod_idx(const struct qed_chain *chain)
{
return chain->u.chain16.prod_idx;
}
static inline u16 qed_chain_get_cons_idx(const struct qed_chain *chain)
{
return chain->u.chain16.cons_idx;
}
static inline u32 qed_chain_get_prod_idx_u32(const struct qed_chain *chain)
{
return chain->u.chain32.prod_idx;
}
static inline u32 qed_chain_get_cons_idx_u32(const struct qed_chain *chain)
{
return chain->u.chain32.cons_idx;
}
static inline u16 qed_chain_get_elem_used(const struct qed_chain *chain)
{
u32 prod = qed_chain_get_prod_idx(chain);
u32 cons = qed_chain_get_cons_idx(chain);
u16 elem_per_page = chain->elem_per_page;
u16 used;
if (prod < cons)
prod += (u32)U16_MAX + 1;
used = (u16)(prod - cons);
if (chain->mode == QED_CHAIN_MODE_NEXT_PTR)
used -= (u16)(prod / elem_per_page - cons / elem_per_page);
return used;
}
static inline u16 qed_chain_get_elem_left(const struct qed_chain *chain)
{
return (u16)(chain->capacity - qed_chain_get_elem_used(chain));
}
static inline u32 qed_chain_get_elem_used_u32(const struct qed_chain *chain)
{
u64 prod = qed_chain_get_prod_idx_u32(chain);
u64 cons = qed_chain_get_cons_idx_u32(chain);
u16 elem_per_page = chain->elem_per_page;
u32 used;
if (prod < cons)
prod += (u64)U32_MAX + 1;
used = (u32)(prod - cons);
if (chain->mode == QED_CHAIN_MODE_NEXT_PTR)
used -= (u32)(prod / elem_per_page - cons / elem_per_page);
return used;
}
static inline u32 qed_chain_get_elem_left_u32(const struct qed_chain *chain)
{
return chain->capacity - qed_chain_get_elem_used_u32(chain);
}
static inline u16 qed_chain_get_usable_per_page(const struct qed_chain *chain)
{
return chain->usable_per_page;
}
static inline u8 qed_chain_get_unusable_per_page(const struct qed_chain *chain)
{
return chain->elem_unusable;
}
static inline u32 qed_chain_get_page_cnt(const struct qed_chain *chain)
{
return chain->page_cnt;
}
static inline dma_addr_t qed_chain_get_pbl_phys(const struct qed_chain *chain)
{
return chain->pbl_sp.table_phys;
}
/**
* qed_chain_advance_page(): Advance the next element across pages for a
* linked chain.
*
* @p_chain: P_chain.
* @p_next_elem: P_next_elem.
* @idx_to_inc: Idx_to_inc.
* @page_to_inc: page_to_inc.
*
* Return: Void.
*/
static inline void
qed_chain_advance_page(struct qed_chain *p_chain,
void **p_next_elem, void *idx_to_inc, void *page_to_inc)
{
struct qed_chain_next *p_next = NULL;
u32 page_index = 0;
switch (p_chain->mode) {
case QED_CHAIN_MODE_NEXT_PTR:
p_next = *p_next_elem;
*p_next_elem = p_next->next_virt;
if (is_chain_u16(p_chain))
*(u16 *)idx_to_inc += p_chain->elem_unusable;
else
*(u32 *)idx_to_inc += p_chain->elem_unusable;
break;
case QED_CHAIN_MODE_SINGLE:
*p_next_elem = p_chain->p_virt_addr;
break;
case QED_CHAIN_MODE_PBL:
if (is_chain_u16(p_chain)) {
if (++(*(u16 *)page_to_inc) == p_chain->page_cnt)
*(u16 *)page_to_inc = 0;
page_index = *(u16 *)page_to_inc;
} else {
if (++(*(u32 *)page_to_inc) == p_chain->page_cnt)
*(u32 *)page_to_inc = 0;
page_index = *(u32 *)page_to_inc;
}
*p_next_elem = p_chain->pbl.pp_addr_tbl[page_index].virt_addr;
}
}
#define is_unusable_idx(p, idx) \
(((p)->u.chain16.idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
#define is_unusable_idx_u32(p, idx) \
(((p)->u.chain32.idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
#define is_unusable_next_idx(p, idx) \
((((p)->u.chain16.idx + 1) & (p)->elem_per_page_mask) == \
(p)->usable_per_page)
#define is_unusable_next_idx_u32(p, idx) \
((((p)->u.chain32.idx + 1) & (p)->elem_per_page_mask) == \
(p)->usable_per_page)
#define test_and_skip(p, idx) \
do { \
if (is_chain_u16(p)) { \
if (is_unusable_idx(p, idx)) \
(p)->u.chain16.idx += (p)->elem_unusable; \
} else { \
if (is_unusable_idx_u32(p, idx)) \
(p)->u.chain32.idx += (p)->elem_unusable; \
} \
} while (0)
/**
* qed_chain_return_produced(): A chain in which the driver "Produces"
* elements should use this API
* to indicate previous produced elements
* are now consumed.
*
* @p_chain: Chain.
*
* Return: Void.
*/
static inline void qed_chain_return_produced(struct qed_chain *p_chain)
{
if (is_chain_u16(p_chain))
p_chain->u.chain16.cons_idx++;
else
p_chain->u.chain32.cons_idx++;
test_and_skip(p_chain, cons_idx);
}
/**
* qed_chain_produce(): A chain in which the driver "Produces"
* elements should use this to get a pointer to
* the next element which can be "Produced". It's driver
* responsibility to validate that the chain has room for
* new element.
*
* @p_chain: Chain.
*
* Return: void*, a pointer to next element.
*/
static inline void *qed_chain_produce(struct qed_chain *p_chain)
{
void *p_ret = NULL, *p_prod_idx, *p_prod_page_idx;
if (is_chain_u16(p_chain)) {
if ((p_chain->u.chain16.prod_idx &
p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
p_prod_idx = &p_chain->u.chain16.prod_idx;
p_prod_page_idx = &p_chain->pbl.c.u16.prod_page_idx;
qed_chain_advance_page(p_chain, &p_chain->p_prod_elem,
p_prod_idx, p_prod_page_idx);
}
p_chain->u.chain16.prod_idx++;
} else {
if ((p_chain->u.chain32.prod_idx &
p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
p_prod_idx = &p_chain->u.chain32.prod_idx;
p_prod_page_idx = &p_chain->pbl.c.u32.prod_page_idx;
qed_chain_advance_page(p_chain, &p_chain->p_prod_elem,
p_prod_idx, p_prod_page_idx);
}
p_chain->u.chain32.prod_idx++;
}
p_ret = p_chain->p_prod_elem;
p_chain->p_prod_elem = (void *)(((u8 *)p_chain->p_prod_elem) +
p_chain->elem_size);
return p_ret;
}
/**
* qed_chain_get_capacity(): Get the maximum number of BDs in chain
*
* @p_chain: Chain.
*
* Return: number of unusable BDs.
*/
static inline u32 qed_chain_get_capacity(struct qed_chain *p_chain)
{
return p_chain->capacity;
}
/**
* qed_chain_recycle_consumed(): Returns an element which was
* previously consumed;
* Increments producers so they could
* be written to FW.
*
* @p_chain: Chain.
*
* Return: Void.
*/
static inline void qed_chain_recycle_consumed(struct qed_chain *p_chain)
{
test_and_skip(p_chain, prod_idx);
if (is_chain_u16(p_chain))
p_chain->u.chain16.prod_idx++;
else
p_chain->u.chain32.prod_idx++;
}
/**
* qed_chain_consume(): A Chain in which the driver utilizes data written
* by a different source (i.e., FW) should use this to
* access passed buffers.
*
* @p_chain: Chain.
*
* Return: void*, a pointer to the next buffer written.
*/
static inline void *qed_chain_consume(struct qed_chain *p_chain)
{
void *p_ret = NULL, *p_cons_idx, *p_cons_page_idx;
if (is_chain_u16(p_chain)) {
if ((p_chain->u.chain16.cons_idx &
p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
p_cons_idx = &p_chain->u.chain16.cons_idx;
p_cons_page_idx = &p_chain->pbl.c.u16.cons_page_idx;
qed_chain_advance_page(p_chain, &p_chain->p_cons_elem,
p_cons_idx, p_cons_page_idx);
}
p_chain->u.chain16.cons_idx++;
} else {
if ((p_chain->u.chain32.cons_idx &
p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
p_cons_idx = &p_chain->u.chain32.cons_idx;
p_cons_page_idx = &p_chain->pbl.c.u32.cons_page_idx;
qed_chain_advance_page(p_chain, &p_chain->p_cons_elem,
p_cons_idx, p_cons_page_idx);
}
p_chain->u.chain32.cons_idx++;
}
p_ret = p_chain->p_cons_elem;
p_chain->p_cons_elem = (void *)(((u8 *)p_chain->p_cons_elem) +
p_chain->elem_size);
return p_ret;
}
/**
* qed_chain_reset(): Resets the chain to its start state.
*
* @p_chain: pointer to a previously allocated chain.
*
* Return Void.
*/
static inline void qed_chain_reset(struct qed_chain *p_chain)
{
u32 i;
if (is_chain_u16(p_chain)) {
p_chain->u.chain16.prod_idx = 0;
p_chain->u.chain16.cons_idx = 0;
} else {
p_chain->u.chain32.prod_idx = 0;
p_chain->u.chain32.cons_idx = 0;
}
p_chain->p_cons_elem = p_chain->p_virt_addr;
p_chain->p_prod_elem = p_chain->p_virt_addr;
if (p_chain->mode == QED_CHAIN_MODE_PBL) {
/* Use (page_cnt - 1) as a reset value for the prod/cons page's
* indices, to avoid unnecessary page advancing on the first
* call to qed_chain_produce/consume. Instead, the indices
* will be advanced to page_cnt and then will be wrapped to 0.
*/
u32 reset_val = p_chain->page_cnt - 1;
if (is_chain_u16(p_chain)) {
p_chain->pbl.c.u16.prod_page_idx = (u16)reset_val;
p_chain->pbl.c.u16.cons_page_idx = (u16)reset_val;
} else {
p_chain->pbl.c.u32.prod_page_idx = reset_val;
p_chain->pbl.c.u32.cons_page_idx = reset_val;
}
}
switch (p_chain->intended_use) {
case QED_CHAIN_USE_TO_CONSUME:
/* produce empty elements */
for (i = 0; i < p_chain->capacity; i++)
qed_chain_recycle_consumed(p_chain);
break;
case QED_CHAIN_USE_TO_CONSUME_PRODUCE:
case QED_CHAIN_USE_TO_PRODUCE:
default:
/* Do nothing */
break;
}
}
/**
* qed_chain_get_last_elem(): Returns a pointer to the last element of the
* chain.
*
* @p_chain: Chain.
*
* Return: void*.
*/
static inline void *qed_chain_get_last_elem(struct qed_chain *p_chain)
{
struct qed_chain_next *p_next = NULL;
void *p_virt_addr = NULL;
u32 size, last_page_idx;
if (!p_chain->p_virt_addr)
goto out;
switch (p_chain->mode) {
case QED_CHAIN_MODE_NEXT_PTR:
size = p_chain->elem_size * p_chain->usable_per_page;
p_virt_addr = p_chain->p_virt_addr;
p_next = (struct qed_chain_next *)((u8 *)p_virt_addr + size);
while (p_next->next_virt != p_chain->p_virt_addr) {
p_virt_addr = p_next->next_virt;
p_next = (struct qed_chain_next *)((u8 *)p_virt_addr +
size);
}
break;
case QED_CHAIN_MODE_SINGLE:
p_virt_addr = p_chain->p_virt_addr;
break;
case QED_CHAIN_MODE_PBL:
last_page_idx = p_chain->page_cnt - 1;
p_virt_addr = p_chain->pbl.pp_addr_tbl[last_page_idx].virt_addr;
break;
}
/* p_virt_addr points at this stage to the last page of the chain */
size = p_chain->elem_size * (p_chain->usable_per_page - 1);
p_virt_addr = (u8 *)p_virt_addr + size;
out:
return p_virt_addr;
}
/**
* qed_chain_set_prod(): sets the prod to the given value.
*
* @p_chain: Chain.
* @prod_idx: Prod Idx.
* @p_prod_elem: Prod elem.
*
* Return Void.
*/
static inline void qed_chain_set_prod(struct qed_chain *p_chain,
u32 prod_idx, void *p_prod_elem)
{
if (p_chain->mode == QED_CHAIN_MODE_PBL) {
u32 cur_prod, page_mask, page_cnt, page_diff;
cur_prod = is_chain_u16(p_chain) ? p_chain->u.chain16.prod_idx :
p_chain->u.chain32.prod_idx;
/* Assume that number of elements in a page is power of 2 */
page_mask = ~p_chain->elem_per_page_mask;
/* Use "cur_prod - 1" and "prod_idx - 1" since producer index
* reaches the first element of next page before the page index
* is incremented. See qed_chain_produce().
* Index wrap around is not a problem because the difference
* between current and given producer indices is always
* positive and lower than the chain's capacity.
*/
page_diff = (((cur_prod - 1) & page_mask) -
((prod_idx - 1) & page_mask)) /
p_chain->elem_per_page;
page_cnt = qed_chain_get_page_cnt(p_chain);
if (is_chain_u16(p_chain))
p_chain->pbl.c.u16.prod_page_idx =
(p_chain->pbl.c.u16.prod_page_idx -
page_diff + page_cnt) % page_cnt;
else
p_chain->pbl.c.u32.prod_page_idx =
(p_chain->pbl.c.u32.prod_page_idx -
page_diff + page_cnt) % page_cnt;
}
if (is_chain_u16(p_chain))
p_chain->u.chain16.prod_idx = (u16) prod_idx;
else
p_chain->u.chain32.prod_idx = prod_idx;
p_chain->p_prod_elem = p_prod_elem;
}
/**
* qed_chain_pbl_zero_mem(): set chain memory to 0.
*
* @p_chain: Chain.
*
* Return: Void.
*/
static inline void qed_chain_pbl_zero_mem(struct qed_chain *p_chain)
{
u32 i, page_cnt;
if (p_chain->mode != QED_CHAIN_MODE_PBL)
return;
page_cnt = qed_chain_get_page_cnt(p_chain);
for (i = 0; i < page_cnt; i++)
memset(p_chain->pbl.pp_addr_tbl[i].virt_addr, 0,
p_chain->page_size);
}
#endif
|